Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2016
License: CC BY
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of a winglet for improving the performance of an H-Darrieus turbine using CFD

Authors: Daróczy, László; Janiga, Gábor; Thevenin, Dominique;

Optimization of a winglet for improving the performance of an H-Darrieus turbine using CFD

Abstract

The importance of wind energy has progressed rapidly in the last years. Although Horizontal Axis Wind Turbines (HAWT) are most well-spread, there is an increasing interest in Vertical Axis Wind Turbines (VAWT), especially in the H-Darrieus concept, as these rotors are omni-directional and affordable. However, the physics of these rotors is more complex; they can only be analyzed using transient CFD simulations. Due to the finite aspect ratio of the rotors, a wingtip vortex is created, which generates losses. Optimizing the wingtip geometry could be advantageous for increasing the efficiency of the rotors: this can only be achieved with three-dimensional turbulent transient simulations. For the optimization of winglets, the whole process (mesh generation, CFD computation, post-processing) has to be automated. This is achieved using the OPtimization Algorithm Library++ (OPAL++), a custom C++ code for the description of blended and canted winglets, coupled with a CD-Adapco StarCCM+ JAVA script for the automatization of the mesh generation and CFD computations. To check the viability of the present concept, two parameters have been varied in the simulations. As shown in what follows, an efficient automatic optimization of wind turbine wingtips can be implemented in this manner.

Related Organizations
Keywords

winglet, wind energy, Computational Fluid Dynamics, [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph], [SPI.MECA] Engineering Sciences [physics]/Mechanics [physics.med-ph], optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research