Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biomass-derived nanoporous carbon with high surface area for practical applications

Authors: Khan, Junayet Hossain;

Biomass-derived nanoporous carbon with high surface area for practical applications

Abstract

Porous materials especially nanoporous carbon, appear especially attractive due to their high specific surface area, well-defined pore structure, high thermal and chemical stability, intrinsic high electrical conductivity, low density and wide availability. In the search for renewable, environmental friendly, cheap, abundant precursors for nanoporous carbon, biomass has been the most promising material, and the nanoporous carbon derived from it has been implemented in energy storage devices and environmental applications, as well as in biomedical sites. Among the various types of biomass, jute fiber, being the world’s second most produced natural fiber, with a 2.8 million metric tons produced each year, had witnessed a great decline in use over the past decade, impacting the livelihoods of over 12 million farmers. Transforming this cheap precursor into high-value -added material with a range of applications has been the main goal. This thesis firstly highlights the various synthesis route available for transforming cheap biomass into high value added nanoporous carbon, focusing on the merits and demerits of each process. Later, it encompasses the various applications using biomass-derived nanoporous carbon and a detailed comparison of the types of biomass utilized and their relative performance in each category. From this understanding, it was possible to devise a synthesis process, which involved an economically viable and simple physical activation procedure for jute fiber at different temperatures. The optimum temperature of 800◦C yielded a moderately high surface area of 981 m2/g with retention of the original fibrous morphology. This jute-derived nanoporous carbon prepared at 800°C displayed an impressive Methylene blue adsorption capacity of 146 mg/g, comparable to expensive activated carbon yielding 176 mg/g. This thesis next explores a novel synthetic process which involves pre-carbonization at 300°C, followed by impregnation with KOH and subsequent high temperature chemical activation of three ...

Country
Australia
Related Organizations
Keywords

biomass, carbon, nanoporous, high surface area, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research