Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate change effects on winter chill for fruit crops in Germany

Authors: Luedeling, Eike; Blanke, Michael; Gebauer, Jens;

Climate change effects on winter chill for fruit crops in Germany

Abstract

To quantify the effects of climate change on fruit production in Germany, this study aimed at determining long-term trends in winter chill, as calculated with the Chilling Hours and Dynamic Models (Chill Portions). An idealized daily temperature curve was used to convert daily temperature records from 43 weather stations, taken throughout the twentieth and late nineteenth centuries, into an hourly dataset, which was then converted to units of winter chill. Besides exposing temporal trends in winter chill, the data could be spatially interpolated, yielding contiguous maps of typical winter chill in Germany around 2010, as well as chilling losses since 1950. Throughout Germany, winter chill varied between 1700 and 3000 Chilling Hours or 125 and 150 Chill Portions. The areas of highest winter chill were located in the northern parts of the country. For the whole of Germany, there were no significant temporal trends. The extent of interregional variation in winter chill depended on the chilling model used. While the Chilling Hours Model showed strong declines in winter chill for the areas around Dresden and Leipzig, as well as for the Lake Constance region, the Dynamic Model did not detect such dramatic changes. More than a decline in winter chill, increased heat during the winter months might become a challenge to German fruit growers. As already experienced during the extraordinarily warm winter of 2006/07, warm temperatures during the winter can cause fruit trees that fulfill their chilling requirements relatively early to bloom prematurely. This can then lead to elevated risk of frost damage and hamper the homogeneity of flowering.

Country
United States
Related Organizations
Keywords

550, Plant Sciences, Life Sciences, Climate change, Agriculture, 333, Winter chill, Chill portions, Chilling hours

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research