Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate Change Sensitivity Assessment on Upper Mississippi River Basin Streamflows Using SWAT

Authors: Jha, Manoj K.; Arnold, Jeffrey G.; Gassman, Philip W.; Gu, Roy R.;

Climate Change Sensitivity Assessment on Upper Mississippi River Basin Streamflows Using SWAT

Abstract

The Soil and Water Assessment Tool (SWAT) model was used to assess the impacts of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed on a monthly basis for 1968-87 and 1988-97, respectively; R2 and Nash-Sutcliffe simulation efficiency (E) values computed for the monthly comparisons were 0.74 and 0.65 for the calibration period and 0.81 and 0.75 for the validation period. The impacts of eight 20-year (1971-90) scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 concentrations was predicted to result in an average annual flow increase of 35 percent. An average annual flow decrease of 15 percent was estimated for a constant temperature increase of 4°C. Essentially linear impacts were predicted among precipitation change scenarios of -20, -10, 10, and 20 percent, which resulted in average annual flow changes at Grafton, Illinois, of -51, -27, 28, and 58 percent, respectively. The final two scenarios accounted for variable monthly temperature and precipitation changes obtained from a previous climate projection with and without the effects of CO2 doubling. The resultant average annual flows were predicted to increase by 15 and 52 percent in response to these climatic changes. Overall, the results indicate that the UMRB hydrology is very sensitive to potential future climate changes and that these changes could stimulate increased periods of flooding or drought.

Country
United States
Related Organizations
Keywords

climate change, flow, hydrology, simulation, spatial patterns, watershed., Environmental Engineering, 550, Economics, Climate, hydrology, simulation, 551, 333, Water Resource Management, climate change, Agricultural and Resource Economics, flow, Civil Construction and Environmental Engineering, Hydraulic Engineering, spatial patterns, watershed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research