Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MITarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DSpace@MIT
Article . 2016
License: CC BY NC SA
Data sources: DSpace@MIT
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reducing 3D MOC Storage Requirements with Axial On-the-fly Ray Tracing

Authors: Gunow, Geoffrey Alexander; Shaner, Samuel Christopher; Forget, Benoit Robert Yves; Smith, Kord S.;

Reducing 3D MOC Storage Requirements with Axial On-the-fly Ray Tracing

Abstract

The Method of Characteristics (MOC) is a popular method to solve the multi-group neutron transport equation. While this method is most widely used in two dimensions, extension to three dimensions allows for more accurate calculation of axial leakage and reaction rates. However, the 3D form of MOC can be computationally prohibitive. One concern is the massive memory requirements imposed by storing all segments of 3D tracks. In this study, an alternative approach is presented for axially extruded geometries that only saves segments in two dimensions. This is accomplished by first creating a 2D xy-plane that incorporates all radial detail at every axial level. Then, standard 2D ray tracing is applied to this plane. Axial extruded regions are constructed during segmentation, each containing an axial mesh. During transport sweeps the 3D segments are reconstructed on-the-fly using 2D segment lengths and 1D axial meshes. This strategy implicitly transforms geometries into an axially extruded representation. The resulting algorithm consumes far less memory with minimal computational overhead for common reactor physics problems.

United States. Office of the Assistant Secretary for Nuclear Energy (Nuclear Energy University Programs Fellowship)

Center for Exascale Simulation of Advanced Reactors (U.S. Department of Energy Contract No. DE-AC02-06CH11357)

Country
United States
Related Organizations
Keywords

629

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green