Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measurements of Retractable Gas-Cooled 6061 Aluminum Electrical Leads Operating in a Vacuum

Authors: Green, M. A.; Aguiar, H.; Bensadoun, M. J.; Gibson, J. H.; Heine, D. L.; Levin, S.; Limon, M.; +2 Authors

Measurements of Retractable Gas-Cooled 6061 Aluminum Electrical Leads Operating in a Vacuum

Abstract

To charge and discharge the ASTROMAG superconducting magnet in space requires retractable gas-cooled leads which must operate in a vacuum. This report describes the design and test of 500 ampere retractable gas-cooled leads made from 6061-T4 aluminum tubes. Aluminum is attractive for gas-cooled electrical leads in space because of its low mass density and the desire for short leads. Initial tests showed that retractable gas-cooled leads could operate in a vacuum from a source of normal helium. The pressure drop through the leads was low enough to permit a superconducting magnet to be charged and discharged while the leads vent into space. The leads were stable at currents above 700 amperes. The voltage drop across the contact between the upper and lower leads was as low as 1.2 mV per lead out of a total voltage drop of 42 mV per lead when the leads carried 714 amperes. The gas required for cooling was comparable to the more conventional copper gas-cooled current leads. In a second test seven months later, the contact resistance between the lead sections had increased considerably. In the second test, the contact resistance was repeatable for one lead but not for the other. 6 refs., 2 figs.

Countries
United States, China (People's Republic of), China (People's Republic of), China (People's Republic of)
Keywords

General Physics, Design, Cryogenics, Testing, Performance Testing, Equipment, Helium, Pumps, Electromagnets, Space Vehicles, Electric Contacts, Alloys, Superconducting Devices, 360104 -- Metals & Alloys-- Physical Properties, Fluid Flow, Electrical Equipment, Fluids, Voltage Drop, Tubes, Cryopumps, Superconductivity And Superfluidity, 36 Materials Science, Electric Conductivity, 621, Heat Transfer, Elements, Vacuum Pumps 420201* -- Engineering-- Cryogenic Equipment & Devices, 75 Condensed Matter Physics, Pressure Drop, Aluminium Alloys, Rare Gases, Laboratory Equipment, Superconducting Magnets, Nonmetals, Energy Transfer, Magnets, Feasibility Studies, 71 Classical And Quantum Mechanics, Gases, Cooling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research