Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Halving Global CO2 Emissions by 2050: Technologies and Costs

Authors: Vallejo, L; Mazur, C; Strapasson, A; Cockerill, T; Gambhir, A; Hills, T; Jennings, M; +8 Authors

Halving Global CO2 Emissions by 2050: Technologies and Costs

Abstract

This study provides a whole-systems simulation on how to halve global CO2 emissions by 2050, compared to 2010, with an emphasis on technologies and costs, in order to avoid a dangerous increase in the global mean surface temperature by end the of this century. There still remains uncertainty as to how much a low-carbon energy system costs compared to a high-carbon system. Integrated assessment models (IAMs) show a large range of costs of mitigation towards the 2°C target, with up to an order of magnitude difference between the highest and lowest cost, depending on a number of factors including model structure, technology availability and costs, and the degree of feedback with the wider macro-economy. A simpler analysis potentially serves to highlight where costs fall and to what degree. Here we show that the additional cost of a low-carbon energy system is less than 1% of global GDP more than a system resulting from low mitigation effort. The proposed approach aligns with some previous IAMs and other projections discussed in the paper, whilst also providing a clearer and more detailed view of the world. Achieving this system by 2050, with CO2 emissions of about 15GtCO2, depends heavily on decarbonisation of the electricity sector to around 100gCO2/kWh, as well as on maximising energy efficiency potential across all sectors. This scenario would require a major mitigation effort in all the assessed world regions. However, in order to keep the global mean surface temperature increase below 1.5°C, it would be necessary to achieve net-zero emission by 2050, requiring a much further mitigation effort.

Country
United Kingdom
Related Organizations
Keywords

0906 Electrical and Electronic Engineering, 330, Climate Change, 600, 0913 Mechanical Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research