Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conception, characterization and lifetime of tandem organic solar cells based on PCDTBT ; Conception, caractérisation et durée de vie de cellules photovoltaïques organiques tandems à base de PCDTBT

Authors: Lechêne, Pierre Balthazar;

Conception, characterization and lifetime of tandem organic solar cells based on PCDTBT ; Conception, caractérisation et durée de vie de cellules photovoltaïques organiques tandems à base de PCDTBT

Abstract

In order to reach commercialization, organic photovoltaic solar cells need to reach efficiencies above 10 % and achieve lifetimes of several thousands of hours. Tandem solar cells are a way of improving the efficiencies. The objectives of this work are therefore to study the fabrication process, the operation and the ageing of organic tandem solar cells. First, single solar cells based on the active material PCDTBT are used as model to investigate the factors governing the cells efficiencies. Using characterization techniques such as impedance spectroscopy, the roles played by each layer of the cells are identified. Based on these results, a protocol to make series tandem cells is developed. Each of its steps is dedicated to treating a key aspect of tandem cells : choice of complementary absorbing polymers, design of the intermediate layer (IML) and thickness optimization. The functioning of the IML is subjected to a particular attention. To optimize the thicknesses, optical phenomena are numerically simulated. The prediction thus made are then compared to experimental results. Finally, the ageing of single and tandem cells is investigated on time spans ranging from several dozens to several thousands of hours. It is shown that the device degradation can be linked to poor ageing of the interface layers, while the active layer stays stable. Organic tandem cells are promising candidates to reach both high efficiencies and long lifetime. ; Pour être viable économiquement, les cellules photovoltaïques organiques doivent dépasser 10 % de rendement et atteindre plusieurs milliers d'heure de durée de vie. Les cellules tandems constituent une voie probante d'augmentation des rendements. Ce travail de thèse a pour objectifs l'élaboration de cellules organiques tandems puis l'étude de leur fonctionnement et de leur vieillissement. Dans un premier temps, les paramètres gouvernant le rendement de cellules photovoltaïques organiques sont examinés sur le modèle de cellules simples à base de PCDTBT. Des caractérisations ...

Country
France
Keywords

Photovoltaics, [SPI.OTHER]Engineering Sciences [physics]/Other, Organic, Photovoltaïque, Polymer, Polymère, Organique

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research