
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Automatic Fault Diagnosis and Prediction of Wind Turbines

A Morlet wavelet-based compensated algorithm was proposed to calculate the accurate amplitudes of faulty signals. The specific way is to compute the time range and frequency values of the faulty signals at first, and then to compensate the amplitudes calculated for above faulty signals according to the center frequency values of Morlet wavelet coefficients to further obtain the accurate amplitudes. A Simulink model was used to demonstrate the feasibility and generalization of the algorithm. At the same time, the algorithm was used to analyze the electric power signals of a test rig and large turbines. Results show that this algorithm can automatically find the amplitude trend of faulty components in a time sequence, and indicate the residual service life of wind turbines after faults are generated. Based on the information of the residual service life, the maintenance and repairing plan for wind turbines, especially offshore ones, can be developed to lower the cost of wind power in operation and maintenance.
- Delft University of Technology Netherlands
Compensated calculation, Morlet wavelet transform, 621, Wind turbine, Electric power signal, Fault diagnosis
Compensated calculation, Morlet wavelet transform, 621, Wind turbine, Electric power signal, Fault diagnosis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
