Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermo-mechanical stresses and dislocations in silicon ingots for photovoltaic applications ; Contraintes thermomécaniques et dislocations dans les lingots de silicium pour applications photovoltaïques

Authors: Gallien, Benjamin;

Thermo-mechanical stresses and dislocations in silicon ingots for photovoltaic applications ; Contraintes thermomécaniques et dislocations dans les lingots de silicium pour applications photovoltaïques

Abstract

SIMaP-EPM laboratory of Grenoble and INES institute of Chambery have both financed this thesis which investigates the effect of thermo-mechanical stresses on the crystal quality during production of silicon ingots for photovoltaic applications. This work begins by showing how photovoltaic industry makes solar panels and the influence of dislocations (defects induced by stresses) on the conversion efficiency. Bibliographic review is also performed in order to describe physical and numerical models of dislocation motion and their multiplication in silicon. Several characterization methods of the dislocation density at the surface of a sample are also presented in the first part of this work.In the second part of this manuscript, comparative study of different quick characterization methods is done in order to show their strength and weaknesses. Therefore, a sample, which is wide, not containing grain boundaries, and having areas of high and low dislocation density, is used as reference sample for the comparison. The first characterization technique studied in this work is the “accurate method” consisting in manually counting the dislocations at the surface of the sample in order to have a precise characterization of dislocation density. The “INES method” uses numerical treatment of SEM pictures to count dislocations. The “Ganapati method” links the grey scale of a sample picture taken with a scanner and the dislocation density. Finally, the “PVScan method”, using the eponymous device, uses diffusion of a laser beam on the surface of the sample for characterization. This comparative study underlines the best applications for each method and which questions should be thought about before performing dislocation characterization.The third part of this work is intended to build two numerical simulations using Comsol commercial software in order to predict dislocation density in silicon ingot at the end of its production. Therefore, Alexander and Haasen model, describing dislocation density and plastic relaxation rate, ...

Country
France
Keywords

Silicon, Contrainte, Dislocation, Silicium, Photovoltaïque, Stress, Photovoltaic, [SPI.MAT]Engineering Sciences [physics]/Materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research