
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Low carbon Supply Chain design
Government regulations and responsible customers’ behavior are key drivers for businesses to adopt respectful management strategies towards the environment and reduce the overall carbon emissions of their supply chains.Under a strict carbon emissions legislation and the increased awareness of customers about carbon emissions issues, companies are now pushed to improve their environmental performance to achieve better profits. Thus, they need to make optimal decisions within their Supply Chain Management to reduce the carbon emissions that are generated from their various activities.In this context, we identify the issue of the low carbon supply chain management. In this thesis, our objective is first to study this problem and to identify its key drivers. We then aim to review the literature and to study how quantitative models have addressed this problem and its related constraints. We therefore develop new models of low carbon supply design problems under the carbon tax legislation, which is recognized to be one of the relevant applied carbon legislations. In our proposed models, we particularly emphasize on the features of this carbon regulation that have been ignored within the literature. We first study strategic decisions of the company taking into consideration the non-homogeneous carbon tax scheme between countries. We then, study the investment decision of the company under a progressive carbon tax strategy. Through analytical and numerical analyses, we study the impact of such carbon legislations schemes on strategic decisions of the company and its performances. We aim to provide companies with a decision support tool to help them make optimal strategic decisions under this carbon legislation. We also provide recommendations to governments, as to which carbon tax legislations are the most efficient. Finally, we initiate the development of stochastic models to study the strategic investment problem in such an environmental context. We first consider a random customer demand, and then a dynamic and uncertain carbon tax regulation. We proceed to the evaluation of our developed stochastic models through numerical examples and comparisons of their results to those of deterministic models that are widely studied within the literature.; Sous la pression externe des gouvernements et des clients conscients des enjeux environnementaux, les entreprises sont plus que jamais obligées de réduire leurs émissions de carbone. Par conséquent, elles sont poussées à trouver les moyens pour optimiser la gestion de leurs chaînes logistiques afin d’améliorer leurs performances environnementale et économique. Dans ce cadre s’intègre la problématique de gestion de chaîne logistique à faible teneur en carbone qui consiste à repenser les décisions de la gestion de la CL en vue de réduire les émissions de carbone. Dans la présente thèse, nous abordons cette problématique. Nous cherchons d’abord à comprendre les différentes caractéristiques de ce problème et à identifier ses facteurs clés. Une telle étude demeure essentielle pour faciliter l’analyse de la littérature existante en termes de modélisation et d’incorporation de paramètres liés aux émissions de carbone dans les modèles mathématiques d’aide à la décision. Nous proposons ensuite de contribuer à la littérature en développant de nouveaux modèles de conception de chaîne logistique sous la législation de la taxe carbone, en proposant une meilleure intégration de cette réglementation. Nous considérons alors dans nos modèles, d’une part, la non homogénéité des taxes carbone entre les pays, puis d’autre part, la progressivité de ce système législatif. A travers la résolution analytique et numérique de nos modèles, nous étudions l’impact de la taxe carbone sur les décisions stratégiques des entreprises et leurs performances. Nous mettons ainsi l’accent sur l’efficacité de cet outil législatif, ainsi que sur les nouvelles directives à mettre en place par les gouvernements pour mieux inciter les entreprises à minimiser leurs impacts indésirables sur l’environnement. Finalement, nous initions la modélisation sous incertitude du problème d’investissement stratégique dans le cadre de la législation de taxe carbone, en considérant d’abord une demande client aléatoire, puis des taxes carbone évolutives et incertaines. Nous proposons une évaluation de nos modèles stochastiques développés en les exploitant sur des exemples numériques et en les comparant aux modèles déterministes largement étudiés dans la littérature.
Taxe carbone, Décisions stratégiques, Carbon leakage, Uncertainty, Fuite de carbone, Taxe progressive, Carbon tax, Progressif tax, Incertitude, [INFO.INFO-OS]Computer Science [cs]/Operating Systems [cs.OS], Émissions carbone, Strategic decisions, Carbon emissions
Taxe carbone, Décisions stratégiques, Carbon leakage, Uncertainty, Fuite de carbone, Taxe progressive, Carbon tax, Progressif tax, Incertitude, [INFO.INFO-OS]Computer Science [cs]/Operating Systems [cs.OS], Émissions carbone, Strategic decisions, Carbon emissions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
