
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Regenerative braking for an electric vehicle with a high-speed drive at the front axle
The main contribution of this paper lies in the development of a novel front-to-rear axle brake force distribution strategy for the regenerative braking control of a vehicle with a high-speed electric drive unit at the front axle. The strategy adapts the brake proportioning to provide extended room for energy recuperation of the electric motor when the vehicle drivability and safety requirements permit. In detail, the strategy is adaptive to cornering intensity enabling the range to be further extended in real-world applications. The regenerative braking control features a brake blending control algorithm and a powertrain controller, which are decisive for enhancing the braking performance. Lastly, the regenerative braking control is implemented in the highfidelity simulation environment Simcenter Amesim, where system efficiency and regenerative brake performance are analysed. Results confirm that the designed regenerative braking greatly improves the effectiveness of energy recuperation for a front-wheel driven electric vehicle with a high-speed drive at the front axle. In conclusion, it is shown that it is feasible to use the high-speed drive with the proposed control design for regenerative braking.
Vehicle Engineering, Energy efficiency, brake force distribution, electric vehicle, regenerative braking, cornering, energy efficiency
Vehicle Engineering, Energy efficiency, brake force distribution, electric vehicle, regenerative braking, cornering, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
