
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry
- University of Salford United Kingdom
- University of Manchester United Kingdom
Technology, T, Science, Q, Engineering (General). Civil engineering (General), Energy Harvesting and Vibration Absorber, Vibration Control, TA1-2040
Technology, T, Science, Q, Engineering (General). Civil engineering (General), Energy Harvesting and Vibration Absorber, Vibration Control, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
