Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pizhūhish dar Bihdās...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation the effect of alkaline pretreatment on improvement of biomethane production from anaerobic digestion mixed municipal waste and sewage sludge

Authors: mansour ahmadi-pirlou; Tarahom Mesri Gundoshmian;

Evaluation the effect of alkaline pretreatment on improvement of biomethane production from anaerobic digestion mixed municipal waste and sewage sludge

Abstract

Abstract Background and Aim: Increasing energy consumption has created an energy crisis in the world. Fossil fuels are limited and depleting. Biogas is considered a fuel that has attracted the attention of researchers. To increase biogas production, different pretreatments have been utilized. The purpose of this study was to investigate the optimal mixing ratio of Municipal Solid Waste (MSW) and Sewage Sludge (SS), as well as the effects of various conditions of alkaline pretreatment on biodegradability of wastes and the amount of biomethane production. Materials and Methods: This study was done in a laboratory digester with 1 L volume at 37 °C with different concentrations of NaOH in a completely randomized design. Biogas volume, methane volume, and changes in pH were measured daily. Measurement parameters in the anaerobic digestion including total solids, volatile solids, and carbon and nitrogen content in the feedstock were determined according to the APHA standard methods. Results: The optimal mixing ratio of MSW to SS was 60:40 with the highest methane yield of 254.87 mL/g VS. Next, the effects of 2, 6, and 10% NaOH concentrations were evaluated on the amount of gas produced, indicating that 6% NaOH concentration significantly improved waste decomposition. Methane production, VS, and TS removal were compared to the control treatment, and there were increases of 30, 27.94, and 27.25%, respectively. Conclusion:The results showed that the mixing ratio of MSW to SS at 60:40 with 6% NaOH improves the decomposition of organic wastes and increases biomethane production. Keywords: Alkaline Pretreatment; Anaerobic Digestion; Biogas; Municipal Solid Waste; Sewage Sludge

Keywords

anaerobic digestion, sewage sludge, municipal solid waste, Environmental sciences, biogas, GE1-350, alkaline pre-treatment, Public aspects of medicine, RA1-1270

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold