Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ تحقیقات جنگل و صنوبر...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proper models to estimate aboveground biomass using Quickbird satellite imagery in plantation areas of Isfahan’s Mobarakeh Steel Company

Authors: Seyyedeh Zahra Hosseini; Mojghan Abbasi; Siavash Bakhtiarvand; Mohammad Salehi;

Proper models to estimate aboveground biomass using Quickbird satellite imagery in plantation areas of Isfahan’s Mobarakeh Steel Company

Abstract

Direct measurement of aboveground biomass of trees is considered as one of the labor-intensive, expensive, time consuming and destructive tasks. The objective of this study was to estimate the biomass of four coniferous and deciduous trees species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia and Morus alba) by means of high resolution Quickbird remotely-sensed data of over a plantation are established around the industrial domain of Isfahan’s Mobarakeh Steel Company. To this aim, three approaches based on vegetation indices, texture analysis and Principal Component Analysis (PCA) were applied to extract required information from satellite imagery. The correlation analysis between field-assessed biomass and the image-based information and regression models were built. The results using vegetation indices (DVI and NDVI) for coniferous species as well as athose from texture analysis and PCA for deciduous species showed significant corelations. As depicted by the species-specific regression of biomass revealed the amount of RMSE ​​ for P. eldarica, C. arizonica, R. pseudoacacia and M. alba to be 53, 20, 30 and 50, respectively. Moreover, species-specific biases for P. eldarica, C. arizonica, R. pseudoacacia and M. alba was shown to be 30, 10, -30 and 44 respectively. The results of this study supports the use of the applied Quickbird data for model-based estimation of aboveground biomass across the study site.

Keywords

plantation, Quickbird, Forestry, SD1-669.5, Mobarakeh Steel Company, satellite image, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold