
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network

The volatility and randomness of wind speed have caused potential safety hazards to wind power grid integration. Improving wind speed forecasting is crucial to the stability of wind power systems and the development of wind energy. A novel short-term wind speed forecasting model (MI-RNN) was proposed based on mutual information (MI) and recursive neural network (RNN). In this model, the MI theory was introduced to select the optimal length of historical wind speed sequence (τ), and the method of using each τ step to forecast wind speed at the next time point was adopted to input the historical wind speed data into RNN for model training. The final wind speed forecasting result was output by the trained RNN model. Besides, the MI-RNN model was applied to the wind speed dataset collected from a wind farm and the forecasting accuracy was compared with that of the traditional wind forecasting methods. The results show that the MI-RNN model has achieved a higher forecasting accuracy compared with the commonly used wind farm wind speed forecasting methods, and can accurately forecast the future wind direction, which is expected to be applied to wind speed forecasting of wind farms with spatial dimensions.
Chemical engineering, wind farm, Naval architecture. Shipbuilding. Marine engineering, wind energy, recurrent neural network (rnn), mutual information (mi), deep learning, VM1-989, wind speed forecasting, TP155-156, TA1-2040, Engineering (General). Civil engineering (General)
Chemical engineering, wind farm, Naval architecture. Shipbuilding. Marine engineering, wind energy, recurrent neural network (rnn), mutual information (mi), deep learning, VM1-989, wind speed forecasting, TP155-156, TA1-2040, Engineering (General). Civil engineering (General)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
