
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
THEORETICAL ASPECTS AND NUMERICAL MODELLING FOR LONG TERM PREDICTION OF ABL AND WIND DISTRIBUTION IN POWER FARM

The paper is structured in seven parts, the last for few conclusions and finally some references. It is based on concrete measurements and observation during around 2 years. First is presented an introduction of the actual situation. In part two are mentioned the methods and hypotheses in evaluation of wind velocity distribution in boundary layers for atmospheric air, taking into account the roughness of ground surfaces. It is mentioned a concrete area, south part of Moldova. In third part is presented a solution for the geodetic model and finally are selected the altimetry solution. In chapter four is determined the influence of air density, temperature and pressure on wind turbine functioning. In the next chapters are presented the numerical model with special boundary conditions, taking into account different value of roughness and finally the obtained results. It is also estimated velocity variation during day-night. Finally is presented the vertical distribution of horizontal wind velocity for a wind farm, obviously important due the power of turbine (around 3 MW each one). Some conclusions and references are also mentioned.
- University of Bucharest Romania
altimetry model, BL-boundary layer, ABL-Atmospheric Boundary Layer, geodetic model, wind farm, ground roughness, inverse flow, Environmental sciences, efficiency, GE1-350
altimetry model, BL-boundary layer, ABL-Atmospheric Boundary Layer, geodetic model, wind farm, ground roughness, inverse flow, Environmental sciences, efficiency, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
