Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Salāmat-i kār-i Īrānarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Salāmat-i kār-i Īrān
Article . 2018
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydraulic modeling the fire network of a combined cycle power with the approach of evaluating and analyzing the performance of fire extinguishing systems

Authors: Mostafa Marzban;

Hydraulic modeling the fire network of a combined cycle power with the approach of evaluating and analyzing the performance of fire extinguishing systems

Abstract

Background and aims: Providing the adequate flow and water pressure in the firefighting network of the power plants requires the proper design and analysis of the firefighting system. This study aimed to model and hydraulic analysis the fire network in a combined cycle power plant to determine the network efficiency in the extinguishing of the possible fire. Methods: In the present study, the amount of water needed for firefighting network was estimated for different sections of the power plant according to NFPA standard. Then, based on general piping maps, isometric, and technical specifications of the site, network modeling was done using WaterGEMS software. Finally, the network efficiency was analyzed to provide flow and water pressure in three possible scenarios. Results: The results of this study showed that the network and pumping station could provide pressure and water flow for cooling and foam production to extinguish the small and medium-sized fire. In special circumstances and with the occurrence of extensive fire, such as the advent of fire in all fuel tanks, the pressure in the network is reduced to 3.6 bar and the pressure to extinguish, spray water, and the foam is not supplied. In other words, the system will not have acceptable performance in large fire extinguishing. Conclusion: Hydraulic modeling of the fire network using WaterGEMS software, in addition to identifying the defects of the fire extinguishing system, it can provide the ability to analyze and design the network to deal with the consequences of fire in industrial environments during crisis situations properly.

Keywords

water gems, hydraulic analysis, power plant, R, Medicine, modeling, firefighting network

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold