Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NaRDuS - Nacionalni ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Primena pasivnog dizajna kao strategije za unapređenje energetske efikasnosti školskih zgrada

Authors: Ranđelović, Dušan;

Primena pasivnog dizajna kao strategije za unapređenje energetske efikasnosti školskih zgrada

Abstract

The importance of school buildings is considerable due to their function, character, purpose, and architectural design, and their refurbishment could lead to significantly better building energy performance. The current research was carried out on select school buildings and is based on a parametric study of the application of energy refurbishment of the thermal envelope (ERTE) and of select passive design systems (PD). The research analyzes the relevant parameters of planning and designing a Trombe wall system (TW), double skin facades (DSF), a green roof (GR), and shading – blinds (BL). In order to determine any possible benefits for increased energy-efficient heating and cooling, models of school buildings were designed using the EnergyPlus software. Climate data which represent a typical meteorological year for the city of Niš were used in the simulation. During modeling, the architectural features of the building were adhered to, as was the layout, the purpose, and the means of using the indoor space. The simulation results indicate that the individual application of the TW, DSF, and GR on the school building models leads to increased energy-efficient heating with decreased energy-efficient cooling. In contrast, the application of BL, independently or in combination with other PD systems, results in the significant increase in energy-efficient cooling. Adequate application of ERTE in combination with TW, DSF, and GR leads to increased energy-efficient heating, while application of ERTE in combination with BL and PD systems leads to the significant increase in energy-efficient cooling. Measures for increased energy-efficient heating and cooling include applying the TW+GR or the DSF+GR system, combined with BL, which confirms that combining numerous PD systems can contribute to significant energy efficiency improvements for the school building models. The application of proper thermal mass and glazing systems significantly increases energy - efficient heating. The application of a TW system, whose thermal mass is either a masonry wall or a 0,25m thick concrete wall, as well as the use of single glazing instead of triple glazing significantly increases energy-efficient heating. The application of a DSF system with an intermediate cavity 0,3 m wide and triple glazing leads to significantly increased energy-efficient heating, compared to applying a DSF system with an intermediate cavity 0.4 m or 0,5 m wide and single glazing. The results confirm that the application of a shading system significantly contributes to increased energy-efficient cooling for the building models. Application of a ventilated TW compared to a non-ventilated one, as well as of a ventilated DSF compared to a non-ventilated one, leads to a significant increase in energy-efficient cooling for the building models. The simulation results offer insight into which parameters provide significant energy efficiency for heating and cooling buildings and confirm the benefits of applying ERTE measures and select PD systems. The applied methodology could be modified, improved, and used in regions with similar climatic characteristics, which would provide a new approach to a decision-making process curbed by limited resources.

Country
Serbia
Keywords

energetka efikasnost, energetska sanacija toplotnog omotača, Trombov zid, Green Roof, Energy Efficiency, Passive Design, dvostruka fasada, Building Energy Performance Simulation, pasivni dizajn, školske zgrade, School Buildings, zeleni krov, Shading, Energy Refurbishment of the Thermal Envelope, simulacije energetskih performansi zgrada, Thrombe Wall, Double Skin Facade, zasenčenje

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 89
    download downloads 145
  • 89
    views
    145
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
89
145
Green