Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2017
Data sources: IRIS Cnr
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogen Generation by Electrochemical Reforming of Bioalcohols

Authors: Marco Bellini;

Hydrogen Generation by Electrochemical Reforming of Bioalcohols

Abstract

The production of hydrogen by the electrolysis of water is a well-established technology. However, it does not have a significant commercial impact due to its high-energy cost. A traditional Proton Exchange Membrane (PEM) electrolyzer needs more than 45 kWhkgH2-1 to achieve a significant rate of hydrogen production. This is the main reason why water electrolysis accounts for only a small proportion of the world's hydrogen production (circa 4%). Since the thermodynamic barrier of water electrolysis consumes 68% of the whole energy input of the device, our strategy for reducing the energy cost is the replacement of the unfavorable anodic oxygen evolution reaction with a more suitable reaction: the partial oxidation of a bioalcohol to a carboxylate. This process needs only 20 kWh for the evolution of one kilogram of hydrogen at the same working conditions of traditional PEM electrolyzers, with a net energy saving of about 44%. Such electrolytic processes that lead to the concomitant generation of hydrogen and industrially relevant chemicals, like acetate and lactate, are often indicated as "electrochemical reforming", or "electroreforming". In order to obtain selective oxidation of alcohols to carboxylic compounds of interest to the fine chemical industry, several anodic catalysts have been investigated, ranging from nanostructured palladium catalysts to rhodium organometallic compounds.

Country
Italy
Related Organizations
Keywords

green chemistry, hydrogen, electrolysis, electrocatalysis, renewable energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research