Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Duzce Üniversitesi A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors

Authors: Gad, Mohammed Sayed; Ağbulut, Ümit; Afzal, Asif; Panchal, H.; Jayaraj, S.; Qasem, N.A.A.; El-Shafay, A. S.;

A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors

Abstract

Global warming, climate change, air pollution, and harmful exhaust emissions for human health are highly associated with the burning of petroleum fuels at a huge level. In the beginning, biodiesel fuels have been introduced as a promising alternative fuel to mitigate these problems. However, poor atomization, low energy content, high viscosity, and density of biodiesels are the main obstacles to the frequent usage of biodiesel fuels in diesel engines. That is because biodiesel fuels in CI engines have generally resulted in higher fuel consumption, lower thermal efficiency, and higher NOx emission. On the other hand, most fuel researchers recently announced that the addition of nanoparticles in biodiesel blends has led to making biodiesels attractive again by significantly improving their poor biodiesel properties such as thermophysical properties, calorific value, heat transfer rate, evaporation rate, etc. From this point of view, many published papers in the area demonstrated that the addition of nanoparticles in biodiesel blended fuels has simultaneously provided fewer exhaust emissions, better performance, and combustion characteristics thanks to the high catalyst effect of nanoparticles. In the conclusion, the present review paper clearly announced that the addition of nanoparticles is a very strong way to re-improving the worsened engine combustion, performance, and emission characteristics of biodiesel-diesel blends. © 2023 Elsevier Ltd Prince Sattam bin Abdulaziz University, PSAU: PSAU/2023/R/1444 This study is supported via funding from “Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444)”.

Country
Turkey
Related Organizations
Keywords

Nano-additives: Engine Performance, Combustion, Nanofuels, Thermodynamic properties, Emission, Engine performance, Heat transfer, Nano-additive: engine performance, Exhausts emissions, Nanosized particle, Nanofuel, Bio-diesel fuel, Diesel engines, Global warming, Combustion characteristics, Particle size, Performance characteristics, Nano additives, Emissions, Nanoparticles, Biodiesel, Nanocatalysts, Thermal efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average