
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Vývoj a ověření nového modelu tepelných poměrů městského prostředí v jemném měřítku
The assessment of different scenarios of the city development to air quality and thermal comfort in the areas of street canyons was our main goal inside the project UrbanAdapt. It follows the need for a model which allows to simulate air flows in fine resolution of the order of meter and realistically predict turbulence in the complex terrain of streets and buildings. The LES models comply with such requirements but the review showed that there was no free available LES model which could model the energy exchange in urban environment, i.e. the interaction of energy and air flows including effects of vegetation and different properties of urban surfaces and materials. Thus we decided to extend the existing LES model PALM by a new module USM (Urban Surface Model) which describes the most important energy exchanges in the urban environment. The validation of the model was done against observations obtained by IR camera in the course of heat wave episode in July 2015.
- Czech Academy of Sciences Czech Republic
- Academy of Sciences Library Czech Republic
- Academy of Sciences Library Czech Republic
turbulent flow, urban modelling, LES, UHI, radiative transfer model, PALM, energy balance, urban surface model
turbulent flow, urban modelling, LES, UHI, radiative transfer model, PALM, energy balance, urban surface model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
