Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL INRAEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Conference object . 2024
Data sources: HAL INRAE
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selection strategy for small ruminants: between productivity and resilience, the difficult equation of farmers' choice of new genetic traits

Authors: Thenard, Vincent; Quenon, Julien;

Selection strategy for small ruminants: between productivity and resilience, the difficult equation of farmers' choice of new genetic traits

Abstract

Small ruminant farming is important for many rural communities around the world. Genetics is one of the ways in which farms can adapt to increase their sustainability. The aim of the European SMARTER H2020 project was to define selection traits better adapted to the agroecological transition. The aim of this paper is to analyse the selection practices of producers and breeders of small ruminants, in relation to sociotechnical factors. 272 surveys of sheep and goat farmers were carried out in 5 countries. A factorial analysis of mixed data followed by a hierarchical ascending classification was used to characterise three selection management patterns: (1) producers (n=93) of small flocks who rely more heavily on grazing, and who have little knowledge of and use of selection and genetic improvement tools; a significant proportion of these breeders want to use robustness and health traits to improve the sustainability of their farms; (2) a profile of producers (n=93) of small flocks who rely more heavily on grazing, and who have little knowledge of and use of selection and genetic improvement tools; a significant proportion of these breeders want to use robustness and health traits to improve the sustainability of their farms. (2) producers (n=34) who are familiar with genetic tools and use AI; they do not think it is necessary for the indexes to include more health and robustness traits in order to make their animals more resistant and increase the sustainability of their system. (3) breeders (n=145) of large herds, with specific culling criteria; these breeders are satisfied with the current indexes, mainly about productivity to maintain the sustainability of their system. Using these results to gain a better understanding of the expectations of producers and breeders could enable breeding organisations and companies to arbitrate changes in breeding objectives in order to increase the resilience of small ruminant farms

L'élevage des petits ruminants est important pour de nombreuses communautés rurales dans le monde. La génétique est l'un des moyens d'adaptation des élevages pour accroitre leur durabilité. Le projet européen SMARTER H2020 avait pour objectif de définir des caractères de sélection mieux adaptés à la transition agroécologique. L'objectif de cette communication est d'analyser les pratiques de sélection des producteurs et sélectionneurs de petits ruminants, en lien avec les facteurs sociotechniques. 272 enquêtes ont été réalisées dans 5 pays auprès d'éleveurs d'ovins et de caprins. Une analyse factorielle de données mixtes suivie d'une classification ascendante hiérarchique ont permis de caractériser trois profils de gestion de la sélection : (1) producteurs (n=93) de petits troupeaux utilisant plus fortement le pâturage, ils ont peu de connaissances et d'usage des outils de sélection et d'amélioration génétique ; une part importante de ces éleveurs souhaite utiliser des caractères de robustesse et de santé pour améliorer la durabilité de leur exploitation. (2) producteurs (n=34) familiers avec les outils génétiques et utilisant l'IA ; ils ne pensent pas nécessaires d'utiliser de nouveaux critères pour améliorer la durabilité de leur système. (3) sélectionneurs (n=145) de grands troupeaux, avec des critères de réforme spécifiques ; ces éleveurs sont satisfaits dans l'ensemble des index actuels, en particulier ceux de productivité pour maintenir la durabilité de leur système. L'utilisation de ces résultats pour mieux comprendre les attentes des producteurs et des éleveurs pourrait permettre aux organisations et entreprises de sélection d'arbitrer des changements d'objectifs de sélection afin d'augmenter la résilience des élevages de petits ruminants.

Country
France
Keywords

[SDV] Life Sciences [q-bio], Resilience, Sustainability, Genetic traits, Sélection, Small ruminant, Petit ruminant, Caractère génétique, Résilience, Selection, Durabilité

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by
Related to Research communities
Energy Research