Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Passivity-Based L2-Gain Adaptive Control for Battery/Supercapacitor Hybrid Energy Storage System in Electric Vehicles

Authors: Zhang, Xizheng; Lu, Zhangyu;

Passivity-Based L2-Gain Adaptive Control for Battery/Supercapacitor Hybrid Energy Storage System in Electric Vehicles

Abstract

Battery/Supercapacitor(SC) current tracking control is a key issue for hybrid energy storage system (HESS) in electric vehicles. An innovative passivity-based L2-gain adaptive control (PBL2AC) based on port-controlled Hamiltonian model with dissipativity (PCHD) for reference current tracking and bus voltage stability in HESS is presented. The developed PCHD model has considered both parameter variations and external disturbances. By using L2-gain disturbance attenuation, the PBL2AC ensures robust reference current tracking and stable bus voltage. Moreover, adaptive mechanism is adopted to estimate the electrical parameters. To validate the proposed control scheme for HESS, simulations and experiments were done and compared with traditional PID and sliding mode control under several typical driving cycles, and results show that the effectiveness of the proposed controller can be confirmed.

Related Organizations
Keywords

control_systems_engineering

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green