
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Passivity-Based L2-Gain Adaptive Control for Battery/Supercapacitor Hybrid Energy Storage System in Electric Vehicles
Battery/Supercapacitor(SC) current tracking control is a key issue for hybrid energy storage system (HESS) in electric vehicles. An innovative passivity-based L2-gain adaptive control (PBL2AC) based on port-controlled Hamiltonian model with dissipativity (PCHD) for reference current tracking and bus voltage stability in HESS is presented. The developed PCHD model has considered both parameter variations and external disturbances. By using L2-gain disturbance attenuation, the PBL2AC ensures robust reference current tracking and stable bus voltage. Moreover, adaptive mechanism is adopted to estimate the electrical parameters. To validate the proposed control scheme for HESS, simulations and experiments were done and compared with traditional PID and sliding mode control under several typical driving cycles, and results show that the effectiveness of the proposed controller can be confirmed.
- Hunan Institute of Engineering China (People's Republic of)
- Hunan Institute of Engineering China (People's Republic of)
control_systems_engineering
control_systems_engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
