
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Swelling‐induced changes in coal microstructure due to supercritical CO2 injection

doi: 10.1002/2016gl070654
handle: 20.500.11937/22445
AbstractEnhanced coalbed methane recovery and CO2 geostorage in coal seams are severely limited by permeability decrease caused by CO2 injection and associated coal matrix swelling. Typically, it is assumed that matrix swelling leads to coal cleat closure, and as a consequence, permeability is reduced. However, this assumption has not yet been directly observed. Using a novel in situ reservoir condition X‐ray microcomputed tomography flooding apparatus, for the first time we observed such microcleat closure induced by supercritical CO2 flooding in situ. Furthermore, fracturing of the mineral phase (embedded in the coal) was observed; this fracturing was induced by the internal swelling stress. We conclude that coal permeability is drastically reduced by cleat closure, which again is caused by coal matrix swelling, which again is caused by flooding with supercritical CO2.
- University of Western Australia Australia
- Curtin University Australia
550, QC801-809, microstructure, permeability drop, Geophysics. Cosmic physics, 710, enhanced coalbed methane recovery, coal swelling, 620, CO2 geosequestration
550, QC801-809, microstructure, permeability drop, Geophysics. Cosmic physics, 710, enhanced coalbed methane recovery, coal swelling, 620, CO2 geosequestration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
