
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An analysis of optimal power flow strategies for a power network incorporating stochastic renewable energy resources

An optimal power management solution is a potential tool to produce cost-effective and environmentally friendly power supply using renewable energy sources (RESs) for the electrical power network. Therefore, the article introduces a novel optimization algorithm inspired by the vitality, namely, Manta Ray Foraging Optimization (MRFO), to figure out both multi- and single-objective problems of optimal power flow (OPF) incorporating stochastic RES. The OPF problems are designed by considering four different objective functions: transmission power loss, emission index, fuel operational costs, and voltage deviation. The stochastic and volatile nature of RES increases the complexity of the OPF issue. In this study, a new MRFO algorithm and some modern metaheuristic algorithms were used to settle the issue of OPF, enhance the energy efficiency, and environmental and cost performance of the power network. The test cases, with and without RES, different RES locations on the network, increase in the load, and outages of some transmission lines, are considered by addressing the challenge of the proposed OPF. These cases are tested with bus systems as 30 and 118, and the outcome from the suggested MRFO is compared with six metaheuristic optimization algorithms. Moreover, OPF challenges are successfully settled by the MRFO algorithm and outperform the proposed metaheuristic optimization methods.
- Hashemite University Jordan
- Cranfield University United Kingdom
- Hashemite University Jordan
- Aston University United Kingdom
- Manchester Metropolitan University United Kingdom
0906 Electrical and Electronic Engineering, Energy
0906 Electrical and Electronic Engineering, Energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
