
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adaptive cooperation control of wind power generation systems based on Hamilton system under limited input

doi: 10.1002/acs.3665
SummaryNumerous wind turbines form large‐scale wind farms, which are complex nonlinear systems with uncertain parameters. The issue of maximum wind energy capture and coordinated control has always been a research hotspot. In this article, under the condition of limited input and uncertain parameters, the preset controller and the adaptive cooperation control are designed to realize the maximum wind energy capture for every wind turbine and the adaptive cooperation control of multiple wind turbines. The research gap lies in that the Hamilton model of wind power generation system is established with uncertain parameters, and the preset controller (method) is designed to capture the maximum wind energy. Under the hypothesis that the uncertain part can be expressed as a linear form about unknown parameter, and using the saturation function processing method in the diagonal matrix, an adaptive feedback controller with limited input is designed to realize the adaptive cooperation control of multiple wind turbines. The simulation results show that under the conditions such as variable wind speed, limited input and uncertain parameters, the wind turbine remain normal operation at the desired angular velocity. It can be concluded that not only the maximum wind energy capture is realized under the condition of variable wind speed, in which the wind turbine can operate on the optimal power curve to improve the utilization of wind energy, but also the adaptive cooperation control of multiple wind turbines can be achieved with limited input and parameter perturbation.
- Yanshan University China (People's Republic of)
- Yanshan University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
