Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Imperial College Lon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Functional Materials
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Functional Materials
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percent‐Level Iodine‐, Oxygen‐, and Bismuth‐Related Surface Defects

Authors: Lissa Eyre; Lissa Eyre; Judith L. MacManus-Driscoll; Robert L. Z. Hoye; Robert L. Z. Hoye; Tahmida N. Huq; Chaewon Kim; +6 Authors

Electronic Structure and Optoelectronic Properties of Bismuth Oxyiodide Robust against Percent‐Level Iodine‐, Oxygen‐, and Bismuth‐Related Surface Defects

Abstract

AbstractIn the search for nontoxic alternatives to lead‐halide perovskites, bismuth oxyiodide (BiOI) has emerged as a promising contender. BiOI is air‐stable for over three months, demonstrates promising early‐stage photovoltaic performance and, importantly, is predicted from calculations to tolerate vacancy and antisite defects. Here, whether BiOI tolerates point defects is experimentally investigated. BiOI thin films are annealed at a low temperature of 100 °C under vacuum (25 Pa absolute pressure). There is a relative reduction in the surface atomic fraction of iodine by over 40%, reduction in the surface bismuth fraction by over 5%, and an increase in the surface oxygen fraction by over 45%. Unexpectedly, the Bi 4f7/2 core level position, Fermi level position, and valence band density of states of BiOI are not significantly changed. Further, the charge‐carrier lifetime, photoluminescence intensity, and the performance of the vacuum‐annealed BiOI films in solar cells remain unchanged. The results show BiOI to be electronically and optoelectronically robust to percent‐level changes in surface composition. However, from photoinduced current transient spectroscopy measurements, it is found that the as‐grown BiOI films have deep traps located ≈0.3 and 0.6 eV from the band edge. These traps limit the charge‐carrier lifetimes of BiOI, and future improvements in the performance of BiOI photovoltaics will need to focus on identifying their origin. Nevertheless, these deep traps are three to four orders of magnitude less concentrated than the surface point defects induced through vacuum annealing. The charge‐carrier lifetimes of the BiOI films are also orders of magnitude longer than if these surface defects were recombination active. This work therefore shows BiOI to be robust against processing conditions that lead to percent‐level iodine‐, bismuth‐, and oxygen‐related surface defects. This will simplify and reduce the cost of fabricating BiOI‐based electronic devices, and stands in contrast to the defect‐sensitivity of traditional covalent semiconductors.

Country
United Kingdom
Related Organizations
Keywords

Technology, Materials Science, Condensed Matter, 09 Engineering, RESISTIVITY BULK MATERIALS, bismuth-based solar absorbers, Physical, TOLERANCE, Nanoscience & Nanotechnology, BIOI, LOSSES, Materials, defect tolerance, Science & Technology, Multidisciplinary, 02 Physical Sciences, Physics, CURRENT TRANSIENT SPECTROSCOPY, Chemistry, photovoltaics, perovskite-inspired materials, PEROVSKITE SOLAR-CELLS, Physical Sciences, Applied, photoinduced current transient spectroscopy, Science & Technology - Other Topics, 03 Chemical Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 29
    download downloads 51
  • 29
    views
    51
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
46
Top 1%
Top 10%
Top 1%
29
51
Green
hybrid