

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—toward Tunable and Sustainable Volumetric Photonic Structures

AbstractAdditive manufacturing is becoming increasingly important as a flexible technique for a wide range of products, with applications in the transportation, health, and food sectors. However, to develop additional functionality it is important to simultaneously control structuring across multiple length scales. In 3D printing, this can be achieved by employing inks with intrinsic hierarchical order. Liquid crystalline systems represent such a class of self‐organizing materials; however, to date they are only used to create filaments with nematic alignment along the extrusion direction. In this study, cholesteric hydroxypropyl cellulose (HPC) is combined with in situ photo‐crosslinking to produce filaments with an internal helicoidal nanoarchitecture, enabling the direct ink writing of solid, volumetric objects with structural color. The iridescent color can be tuned across the visible spectrum by exploiting either the lyotropic or thermotropic behavior of HPC during the crosslinking step, allowing objects with different colors to be printed from the same feedstock. Furthermore, by examining the microstructure after extrusion, the role of shear within the nozzle is revealed and a mechanism proposed based on rheological measurements simulating the nozzle extrusion. Finally, by using only a sustainable biopolymer and water, a pathway toward environmentally friendly 3D printing is revealed.
- University of Cambridge United Kingdom
- THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE United Kingdom
- University of Cambridge
- THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE United Kingdom
liquid crystals, hydroxypropyl cellulose, 3D printing, structural color, sustainability
liquid crystals, hydroxypropyl cellulose, 3D printing, structural color, sustainability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 57 download downloads 14 - 57views14downloads
Data source Views Downloads Apollo 57 14


