
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bifunctional Star‐Burst Amorphous Molecular Materials for OLEDs: Achieving Highly Efficient Solid‐State Luminescence and Carrier Transport Induced by Spontaneous Molecular Orientation

pmid: 23401305
Bifunctional star-burst amorphous molecular materials displaying both efficient solid-state luminescence and high hole-transport properties are developed in this study. A high external electroluminescence quantum efficiency up to 5.9% is attained in OLEDs employing the developed amorphous materials. It is revealed that the spontaneous horizontal orientation of these light-emitting molecules in their molecular-condensed states leads to a remarkable enhancement of the electroluminescence efficiencies and carrier-transport properties.
- Kyushu University Japan
- International Institute of Minnesota United States
- International Institute of Minnesota United States
- National Presto Industries United States
- Kyushu University Japan
Equipment Design, Electron Transport, Equipment Failure Analysis, Energy Transfer, Semiconductors, Luminescent Measurements, Materials Testing, Organic Chemicals, Lighting
Equipment Design, Electron Transport, Equipment Failure Analysis, Energy Transfer, Semiconductors, Luminescent Measurements, Materials Testing, Organic Chemicals, Lighting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).96 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
