
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhanced SWIR Light Detection in Organic Semiconductor Photodetectors through Up‐Conversion of Mid‐Gap Trap States

AbstractShortwave‐infrared (SWIR) photodetectors are vital for many scientific and industrial applications including surveillance, quality control and inspection. In recent decades, photodetectors based on organic semiconductors have emerged, demonstrating potential to add real value to broadband and narrowband imaging and sensing scenarios, where factors such as thermal budget sensitivity, large area aperture necessity, cost considerations, and lightweight and conformal flexibility demands are prioritized. It is now recognized that the performance of organic photodetectors (OPDs), notably their specific detectivity, is ultimately limited by trap states, universally present in disordered semiconductors. This work adopts an approach of utilizing these mid‐gap states to specifically create a SWIR photo‐response. To this end, this work introduces a somewhat counter‐intuitive approach of “trap‐doping” in bulk heterojunction (BHJs) photodiodes, where small quantities of a guest organic molecule are intentionally incorporated into a semiconducting donor:acceptor host system. Following this approach, this work demonstrates a proof‐of‐concept for a visible‐to‐SWIR broadband OPD, approaching (and, to some extent, even exceeding) state‐of‐the‐art performance across critical photodetector metrics. The trap‐doping approach is, even though only a proof‐of‐concept currently, broadly applicable to various spectral windows. It represents a new modality for engineering photodetection using the unconventional strategy of turning a limitation into a feature.
- Swansea University United Kingdom
- Åbo Akademi University Finland
- Hasselt University Belgium
bulk-heterojunction, mid-gap trap states, up-conversion, 620, SWIR, thin films, photodetectors, organic semiconductors
bulk-heterojunction, mid-gap trap states, up-conversion, 620, SWIR, thin films, photodetectors, organic semiconductors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
