Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Theory and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Theory and Simulations
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Optimization Approach for Improving Comprehensive Performance of PHET Based on Evolutionary Many‐Objective Optimization

Authors: Hua Chai; Xuan Zhao; Qiang Yu; Qi Han; Zichen Zheng;

An Optimization Approach for Improving Comprehensive Performance of PHET Based on Evolutionary Many‐Objective Optimization

Abstract

AbstractThe parameter optimization coupled with the control strategy and target driving cycle directly affects the performance of vehicles. This paper proposes an optimization approach for a plug‐in hybrid electric truck (PHET), which considers comprehensive performances including fuel economy, emissions, vehicle drivability, safety, and dynamics. First, 10 initial design parameters are selected from powertrain components and a real‐time energy management strategy (EMS). Then, a definitive screening design (DSD) is proposed to simplify the design parameters. Finally, non‐dominated sorting genetic algorithm‐III (NSGA‐III) is proposed to solve a constrained many‐objective optimization problem with 9 objectives, and the design space is refined through a sensitivity analysis. Simulation results demonstrate that the proposed optimization approach can achieve significant improvements regarding both the comprehensive performances, power repartition, and system efficiency. The simulation is conducted both on Chinese Heavy‐Duty Commercial Vehicle Test Cycle (CHTC) and Urban Dynamometer Driving Schedule for Heavy‐Duty Vehicles (UDDSHDV). In addition, to guide a decision maker (DM) to make trade‐offs among many objectives, preferences are also incorporated into the solutions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average