Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Energy Materials
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications

Authors: Huifang Xiao; Min Pan; Jun Yu Harry Chu; Chris R. Bowen; Sebastian Bader; Javier Aranda; Meiling Zhu;

Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications

Abstract

AbstractThe need for wireless condition monitoring and control of hydraulic systems in an autonomous and battery‐free manner is attracting increasing attention in an effort to provide improved sensing functionality, monitoring of system health, and to avoid catastrophic failures. The potential to harvest energy from hydraulic pressure ripples and noise is particularly attractive since they inherently have a high energy intensity, which is associated with the hydraulic mean pressure and flow rate. This paper presents a comprehensive overview of the state of the art in hydraulic pressure energy harvesting, which includes the fundamentals of pressure ripples in hydraulic systems, the choice of electroactive materials and device structures, and the influence of the fluid–mechanical interface. In addition, novel approaches for improving the harvested energy and potential applications for the technology are discussed, and future research directions are proposed and outlined.

Country
United Kingdom
Keywords

energy harvesting, hydraulic pressure ripples, /dk/atira/pure/subjectarea/asjc/2100/2105; name=Renewable Energy, Sustainability and the Environment, /dk/atira/pure/subjectarea/asjc/2500/2500; name=General Materials Science, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, device architectures, electroactive materials

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research