Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Energy Mate...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Energy Materials
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries

Authors: Jianwen Liang; Eveline van der Maas; Jing Luo; Xiaona Li; Ning Chen; Keegan R. Adair; Weihan Li; +14 Authors

A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries

Abstract

AbstractUnderstanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors.

Country
Netherlands
Keywords

energy storage, 290, solid-state electrolytes, all-solid-state Li batteries, halides, superionic conductors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 1%
Top 10%
Top 1%
Green
bronze