
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ultrafine TiO2 Nanoparticle Supported Nitrogen‐Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassium‐Ion Batteries

Potassium‐ion batteries (KIBs) have attracted enormous attention as a next‐generation energy storage system due to their low cost, fast ionic conductivity within electrolytes, and high operating voltage. However, developing suitable electrode materials to guarantee high‐energy output and structural stability to ensure long cycling performance remains a critical challenge. Herein, anatase TiO2 nanoparticles are encapsulated in nitrogen‐rich graphitic carbon (TiO2@NGC) with hierarchical pores and high surface area (250 m2 g−1) using the Ti‐based metal–organic framework NH2‐MIL‐125 (Ti8O8(OH)4(NH2‐bdc)6 with NH2‐bdc2− = 2‐amino‐1,4‐benzenedicarboxylate) as a sacrificial template. Serving as the anode material in a K‐ion half‐cell, TiO2@NGC delivers a high capacity of 228 mA h g−1 with remarkable cycling performance (negligible loss over 2000 cycles with more than 98% Coulombic efficiency). The charge‐storing mechanism is underpinned using ex situ characterization techniques such as ex situ X‐ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. It is revealed that the original TiO2 phase gets transformed to the anorthic Ti7O13 and monoclinic K2Ti4O9 phase after the first charge/discharge cycle, which further initiates the charge storage process via the conversion reactions.
- TU Dresden Germany
- Technical University of Ostrava Czech Republic
- Indian Institutes of Technology India
- Technical University of Ostrava Czech Republic
- Palacký University, Olomouc Czech Republic
energy storage, potassium ion batteries (KIBs), NH-MIL-125, TJ807-830, 540, NH2-MIL-125, Environmental technology. Sanitary engineering, Renewable energy sources, metal–organic frameworks, hybrid materials, TD1-1066
energy storage, potassium ion batteries (KIBs), NH-MIL-125, TJ807-830, 540, NH2-MIL-125, Environmental technology. Sanitary engineering, Renewable energy sources, metal–organic frameworks, hybrid materials, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
