
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding the Failure Mechanism of Rechargeable Aluminum Batteries: Metal Anode Perspective Through X‐Ray Tomography

Rechargeable aluminum batteries (AlBs), which represent cost‐effective energy‐storage devices due to the abundance of natural aluminum resources, have emerged as promising candidates for the next generation of rechargeable batteries. Although the electrochemical deposition of aluminum in ionic liquids (ILs) is well investigated for aluminum refining, the reversible electrochemical deposition/dissolution behavior of aluminum ions is not trivial. More specifically, the dendrite growth issue, which is common in Li metal anodes, is scarcer or vague. Herein, the electrochemical stability of the aluminum metal anode in IL electrolytes is investigated and the failure mechanism is discussed. It is confirmed that the inorganic anion of ILs mainly affects the electrochemical stability, whereas the organic cation influences the aluminum metal degradation. X‐ray computed tomography results further identify deterioration of the surface morphology of the aluminum metal. The formation of “dead aluminum” is further confirmed, which indeed causes cell failure with repeated cycles. Finally, using the predeposited aluminum graphene paper as an alternative anode candidate for AlBs is further demonstrated.
- UNSW Sydney Australia
dead aluminum, TJ807-830, ionic liquid electrolytes, Environmental technology. Sanitary engineering, Renewable energy sources, aluminum metal anodes, rechargeable aluminum batteries, X-ray tomography, TD1-1066
dead aluminum, TJ807-830, ionic liquid electrolytes, Environmental technology. Sanitary engineering, Renewable energy sources, aluminum metal anodes, rechargeable aluminum batteries, X-ray tomography, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
