
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Long‐Term Operation of Nb‐Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Water Electrolyzers

Proton exchange membrane water electrolysis (PEMWE) is the most promising technology for green hydrogen production using renewable electricity, but it is expensive due to the Ti bipolar plates (BPPs). Herein, a PEMWE stack with coated stainless steel (ss) BPPs (Nb/Ti/ss‐BPP and Nb/ss‐BPP) is reported, which operates for about 14 000 h at 1.63 ± 0.12 A cm−2 and 65 °C. The average degradation rate is as low as 1.2% or 5.5 μV h−1. Scanning electrode microcopy reveals no signs of corrosion of the ss beneath the coatings. The interfacial contact resistance increases due to the formation of poorly conductive amorphous Nb oxides, as shown by atomic force microscopy and X‐Ray photoelectron spectroscopy, although it does not affect the cell performance. The results prove that Ti is not needed anymore as base material for manufacturing the BPPs, thus the cost of PEMWE can be significantly reduced.
bipolar plates, info:eu-repo/classification/ddc/333.7, stainless steels, TJ807-830, long-term stability, Environmental technology. Sanitary engineering, Renewable energy sources, PEM electrolyzers, PEM electrolysis, TD1-1066
bipolar plates, info:eu-repo/classification/ddc/333.7, stainless steels, TJ807-830, long-term stability, Environmental technology. Sanitary engineering, Renewable energy sources, PEM electrolyzers, PEM electrolysis, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
