

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Insights into the High Activity of Ruthenium Phosphide for the Production of Hydrogen in Proton Exchange Membrane Water Electrolyzers

handle: 10261/359786
The demand of green hydrogen, that is, the hydrogen produced from water electrolysis, is expected to increase dramatically in the coming years. State‐of‐the‐art proton exchange membrane water electrolysis (PEMWE) uses high loadings of platinum group metals, such as Pt in the electrode where hydrogen is produced. Alternative electrodes based on phosphides, sulfides, nitrides, and other low‐cost alternatives are under investigation. Herein, a simple process for the preparation of RuP electrodes with high activity for the hydrogen evolution reaction (HER) in acidic electrolyte is described. A straightforward one‐pot synthesis that yields RuP nanoparticles with fine‐tuned composition and stoichiometry is presented, as determined by multiple characterization techniques, including lab‐ and synchrotron‐based experiments and theoretical modeling. The RuP nanoparticles exhibit a high activity of 10 mA cm−2 at 36 mV overpotential and a Tafel slope of 30 mV dec−1, which is comparable to Pt/C. Moreover, a RuP catalyst‐coated membrane (CCM) with a low Ru loading of 0.6 mgRu cm−2 is produced and tested in a PEMWE cell configuration, yielding 1.7 A cm−2 at 2 V.
- Spanish National Research Council Spain
- German Aerospace Center Germany
- King Abdulaziz University Saudi Arabia
- King Abdulaziz University Saudi Arabia
RuP, TJ807-830, Environmental technology. Sanitary engineering, Renewable energy sources, hydrogen evolution reaction, catalyst-coated membranes, green hydrogen, proton exchange membrane water electrolysis, TD1-1066
RuP, TJ807-830, Environmental technology. Sanitary engineering, Renewable energy sources, hydrogen evolution reaction, catalyst-coated membranes, green hydrogen, proton exchange membrane water electrolysis, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 44 download downloads 64 - 44views64downloads
Data source Views Downloads DIGITAL.CSIC 44 64


