Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Osuva (University of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Energy and Sustainability Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intelligent Modeling and Optimization of Solar Plant Production Integration in the Smart Grid Using Machine Learning Models

Authors: Muhammad Abubakar; Yanbo Che; Muhammad Faheem; Muhammad Shoaib Bhutta; Abdul Qadeer Mudasar;

Intelligent Modeling and Optimization of Solar Plant Production Integration in the Smart Grid Using Machine Learning Models

Abstract

To address the rising energy demands in industrial and public sectors, integrating zero‐carbon emission energy sources into the power grid is crucial. Smart grids, equipped with advanced sensing, computing, and communication technologies, offer an efficient way to incorporate renewable energy resources and manage power systems effectively. However, improving solar energy efficiency, which currently contributes around 3.6% to global electricity, is a challenge in smart grid infrastructures. This research tackles this issue by deploying machine learning models, specifically recurrent neural network (RNN), long short‐term memory (LSTM), and gate recurrent unit (GRU), to predict measurements that could enhance solar power generation in smart grids. The objective is to boost both performance and accuracy of solar power generation in the smart grid. The study conducts experimental analyses and performance evaluations of these models in smart grid environments, considering factors like power output, irradiance, and performance ratio. The results, presented through graphical visualizations, show notable improvements, particularly with the LSTM model, which achieves a 97% accuracy, outperforming the RNN and GRU models. This outcome highlights the LSTM model's effectiveness in accurately predicting measurements, thereby advancing solar power generation efficiency in the smart grid framework.

Countries
Finland, Finland
Keywords

renewable energy resources, 330, solar energy, TJ807-830, fi=Tietotekniikka|en=Computer Science|, artificial intelligence, Environmental technology. Sanitary engineering, Renewable energy sources, smartgrid, machine learning, artificial intelligence, smart grid, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
Green
gold