Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao AIChE Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AIChE Journal
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the optimization of cyclic adsorption separation processes

Authors: Paulo Cruz; Fernão D. Magalhães; Adélio Mendes;

On the optimization of cyclic adsorption separation processes

Abstract

AbstractAn innovative approach for the optimization of general cyclic adsorption separation processes (PSA and VSA), using the Skarstrom cycle with equalization, is proposed. The main objective is to study the optimal operating conditions for different adsorbent types, the optimal equalization stage configurations, and different underlying assumptions that are usually presumed in process modeling and simulation. The partial differential equations corresponding to the bulk gas‐phase mass balances were solved with a recent numerical technique, developed within our group, based on an adaptive multiresolution approach. The partial differential equations for the intraparticle balances were solved using the orthogonal collocation method. The proposed dynamic simulator proved to be very efficient in terms of computational time and memory requirements: stability and accuracy are simultaneously ensured. The optimization was performed with a successive quadratic‐programming algorithm that proved to be efficient because the optimum can be reached in a modest number of iterations. The proposed approach was applied to the particular case of oxygen production from air by PSA and VSA, with the aim of studying the performance of two commercially available adsorbents, commonly used in this specific separation, and the best configuration during equalization stage. © 2005 American Institute of Chemical Engineers AIChE J, 2005

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback