
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Finite difference time domain simulation of soil ionization in grounding systems under lightning surge conditions

handle: 10447/2199
AbstractThis paper proposes a Maxwell's equations finite difference time domain (FDTD) approach for electromagnetic transients in ground electrodes in order to take into account the non linear effects due to soil ionization. A time variable soil resistivity method is used in order to simulate the soil breakdown, without the formulation of an initial hypothesis about the geometrical shape of the ionized zone around the electrodes. The model has been validated by comparing the computed results with available data found in technical literature referred to concentrated earths. Some application examples referred to complex grounding systems are reported to show the computational capability of the proposed model. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Finite difference, electromagnetic transient, grounding systems
Finite difference, electromagnetic transient, grounding systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
