
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Direct Air Capture of CO2 by Physisorbent Materials

pmid: 26440308
AbstractSequestration of CO2, either from gas mixtures or directly from air (direct air capture, DAC), could mitigate carbon emissions. Here five materials are investigated for their ability to adsorb CO2 directly from air and other gas mixtures. The sorbents studied are benchmark materials that encompass four types of porous material, one chemisorbent, TEPA‐SBA‐15 (amine‐modified mesoporous silica) and four physisorbents: Zeolite 13X (inorganic); HKUST‐1 and Mg‐MOF‐74/Mg‐dobdc (metal–organic frameworks, MOFs); SIFSIX‐3‐Ni, (hybrid ultramicroporous material). Temperature‐programmed desorption (TPD) experiments afforded information about the contents of each sorbent under equilibrium conditions and their ease of recycling. Accelerated stability tests addressed projected shelf‐life of the five sorbents. The four physisorbents were found to be capable of carbon capture from CO2‐rich gas mixtures, but competition and reaction with atmospheric moisture significantly reduced their DAC performance.
- University of Limerick Ireland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).466 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
