
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Lactone Backbone Density in Rigid Electron‐Deficient Semiconducting Polymers Enabling High n‐type Organic Thermoelectric Performance

AbstractThree lactone‐based rigid semiconducting polymers were designed to overcome major limitations in the development of n‐type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P‐0), to 50 % (P‐50), and 75 % (P‐75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N‐DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm−1 K−2were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n‐type organic thermoelectrics.
- University of Oxford United Kingdom
- University of Kentucky United States
- Northwestern University United States
- King Abdullah University of Science and Technology Saudi Arabia
- University of Science and Technology Yemen
chemical doping; metal-free polymerization; organic thermoelectrics; rigid semiconducting polymers; synthetic methods, Materials Chemistry, Materialkemi
chemical doping; metal-free polymerization; organic thermoelectrics; rigid semiconducting polymers; synthetic methods, Materials Chemistry, Materialkemi
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
