Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Angewandte Chemie In...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie International Edition
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells

Authors: Zhou, Zhongmin; Wang, Zaiwei; Zhou, Yuanyuan; Pang, Shuping; Wang, Dong; Xu, Hongxia; Liu, Zhihong; +2 Authors

Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells

Abstract

AbstractWe report herein the discovery of methylamine (CH3NH2) induced defect‐healing (MIDH) of CH3NH3PbI3 perovskite thin films based on their ultrafast (seconds), reversible chemical reaction with CH3NH2 gas at room temperature. The key to this healing behavior is the formation and spreading of an intermediate CH3NH3PbI3⋅xCH3NH2 liquid phase during this unusual perovskite–gas interaction. We demonstrate the versatility and scalability of the MIDH process, and show dramatic enhancement in the performance of perovskite solar cells (PSCs) with MIDH. This study represents a new direction in the formation of defect‐free films of hybrid perovskites.

Country
China (People's Republic of)
Keywords

Titanium, 660, Oxides, Calcium Compounds, Perovskite phases, Phase Transition, Photovoltaics, Methylamine, Methylamines, Electric Power Supplies, Solar Energy, Thin film, Gases, Defect healing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    424
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
424
Top 0.1%
Top 1%
Top 0.1%
Related to Research communities
Energy Research