Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Angewandte Chemie In...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie International Edition
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Perovskite SrCo0.9Nb0.1O3−δ as an Anion‐Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density

Authors: Yu Liu; Zongping Shao; Zongping Shao; Liang Zhu; Wei Zhou; Chao Su; Meilin Liu;

Perovskite SrCo0.9Nb0.1O3−δ as an Anion‐Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density

Abstract

AbstractWe have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.

Country
Australia
Keywords

Energy storage, Perovskite oxides, 1503 Catalysis, 540, 1600 Chemistry, 530, Oxygen vacancy, Supercapacitors, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research