Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Polymer Science
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal and morphological stability of polystyrene microcapsules containing phase‐change materials

Authors: Paula Sánchez; Juan F. Rodríguez; Amaya Romero; Manuel Carmona; Luz Sánchez Silva;

Thermal and morphological stability of polystyrene microcapsules containing phase‐change materials

Abstract

AbstractPolystyrene microcapsules with paraffin wax as the active agent [phase‐change material (PCM)] were produced by a Shirasu porous glass emulsification technique and a subsequent suspension‐like polymerization process. The suitability of the obtained microcapsules for textile applications was studied. The thermal properties, surface morphology, and structural stability of the PCM microcapsules were investigated with differential scanning calorimetry, thermogravimetric analysis, and environmental scanning electron microscopy. The microcapsules could be used without any appreciable damage or irreversible changes in their integrity until 135°C. Furthermore, these microcapsules were heat‐resistant and could endure the curing conditions of textile coating up to 140°C for 30 min. In addition, the stability of the microcapsules under common laundering conditions was tested. It was confirmed that the microcapsules were durable enough and maintained their stability during stirring in hot water and alkaline solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%