Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bioelectrochemical synthesis of caproate through chain elongation as a complementary technology to anaerobic digestion

Authors: Deepak Pant; Motakatla Venkateswar Reddy; Ahmed ElMekawy;

Bioelectrochemical synthesis of caproate through chain elongation as a complementary technology to anaerobic digestion

Abstract

AbstractChain elongation is one of the common anaerobic fermentation processes in which bacteria convert ethanol and short chain fatty acids (SCFA) into medium chain fatty acids (MCFA). These are single carboxylic acids having six to twelve carbon atoms, with several applications, such as biofuels. Caproate is a promising MCFA, and several technologies were proposed for the valorization of waste to obtain it. Bioelectrochemical systems (BESs) are technologies that are capable of converting the chemical energy of organic/inorganic wastes into value‐added products, using in situ generated H2 or electricity as energy sources. To convert waste biomass into caproate, an electron donor in the form of hydrogen or ethanol should be supplemented within the anaerobic fermentation, which can be used as the electron donor in the cathodic compartment for the conversion of acetate into caproate. This review highlights recent anaerobic and bioelectrochemical processes for the production of caproate. The discussion will also cover the potential applications of this technology, together with obstacles to its use, compared with the conventional anaerobic digestion (AD) process, and considers whether it could be a standalone technology or a complementary one for AD. © 2018 Society of Chemical Industry and John Wiley & Sons, Ltd

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%