Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Producing aromatic‐rich oil through microwave‐assisted catalytic pyrolysis of low‐density polyethylene over Ni/Co/Cu‐doped Ga/ZSM‐5 catalysts

Authors: K. M. Oajedul Islam; Nabeel Ahmad; Usama Ahmed; Mohammad Nahid Siddiqui; Aniz Chennampilly Ummer; Abdul Gani Abdul Jameel;

Producing aromatic‐rich oil through microwave‐assisted catalytic pyrolysis of low‐density polyethylene over Ni/Co/Cu‐doped Ga/ZSM‐5 catalysts

Abstract

AbstractMicrowave (MW)‐assisted catalytic pyrolysis represents a promising method for transforming petroleum‐based plastic waste into valuable chemicals, offering a pathway towards more sustainable circular economy. In this study, catalytic pyrolysis of low‐density polyethylene (LDPE) was conducted under MW irradiation. The influence of various catalyst types (HZSM‐5, Ga/ZSM‐5, Ga/Ni/ZSM‐5, Ga/Co/ZSM‐5, and Ga/Cu/ZSM‐5) on product yield and distribution was examined. The results revealed that the Ga/ZSM‐5 catalyst yielded the maximum liquid oil, approximately 41%. Ga/Ni/ZSM‐5 performed excellently in the production of long‐chain olefins, constituting about 27% of the liquid fraction. However, Ga/Co/ZSM‐5 led to the production of heavy pyrolysis oil containing nearly 25% long‐chain paraffins, rendering it unsuitable for producing high‐value chemicals. Conversely, the Ga/Cu/ZSM‐5 catalyst yielded an aromatic‐rich pyrolysis oil, with benzene derivatives constituting approximately 90% of the liquid oil fraction, thus proving to be a suitable catalyst for the intended application. The liquid product distribution was compared with a petroleum assay by SimDist, and this suggested that utilizing the HZSM‐5 catalyst could yield an 86.4% naphtha fraction. The study also revealed that the Ga/Cu/ZSM‐5 catalyst generated the largest amounts of hydrogen and syngas, as determined by a MicroGC analysis of the gas products. This catalyst also exhibited the maximum coke deposition (1.35%) postreaction, which was attributed to its high aromatic hydrocarbon content in the pyrolysis oil and maximal hydrogen release. A comparison of fresh and spent catalyst properties was conducted to gain insights into catalyst activity and to correlate the effects of metal doping on product distribution. These findings underscore the potential of MW‐assisted catalytic pyrolysis, particularly with the Ga/Cu/ZSM‐5 catalyst, for the efficient conversion of plastic waste into valuable chemicals, thereby contributing to sustainable resource utilization and environmental conservation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research