Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biofuels Bioproducts and Biorefining
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Will second‐generation ethanol be able to compete with first‐generation ethanol? Opportunities for cost reduction

Authors: James D. Stephen; Warren Mabee; John N. Saddler;

Will second‐generation ethanol be able to compete with first‐generation ethanol? Opportunities for cost reduction

Abstract

AbstractThe production costs of a lignocellulosic ethanol process, both currently and projected for 2020, were compared to a corn ethanol process, to determine its economic competitiveness. A techno‐economic model was used to estimate the current production costs for a base‐case, 50 ML yr‐1 softwood facility, as well as providing a basis for cost‐reduction test cases assessing different feedstock, scaling, enzyme, and coproduct options. The progress ratio indicated that lignocellulosic ethanol could be competitive with corn ethanol by 2020, based on volumes mandated by 2007 EISA. However, cost reductions must occur across all components of the production process. The ambitious cellulase enzyme cost reductions that have been projected were shown to be challenging as cellulase costs still need to be significantly lower than those of amylase enzymes on a unit‐of‐protein basis. Opportunities for capital cost reduction relative to first‐generation plants were primarily restricted to the pre‐treatment/hydrolysis unit operations, with operational conditions such as the severity of pre‐treatment and hydrolysis residence times, significantly influencing operating costs. Alternative operating strategies, such as maximizing hydrolysis rate with shorter residence times rather than maximizing ethanol yield and using the unhydrolyzed residue for heat and power production, showed some promise. Increasing the size of the facility to 1 BL yr‐1 output substantially reduced the per unit capital costs, but not to a level competitive with an average (150 ML yr‐1) corn ethanol facility. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 1%
Top 10%
Top 10%