Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotechnology and Bi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology and Bioengineering
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging

Authors: Herrling, M. P.; Guthausen, G.; Wagner, M.; Horn, H.; Lackner, S.;

Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging

Abstract

ABSTRACTBiofilms on cylindrical carrier material originating from a lab‐scale moving bed biofilm reactor (MBBR) were investigated by means of Magnetic Resonance Imaging (MRI). The aim of this study was to determine the local flow velocities at the inner face of the biofilm carrier. To get an insight into the mass transport processes, flow velocity maps of blank and with biofilm cultivated carriers were measured. A single carrier was placed in a tube in three different orientations and exposed to flow velocities of 0.21, 0.42, and 0.64 mm/s. The interplay of the biofilm morphology and the local flow pattern was then analyzed including the effect of the orientation of the carrier in relation to the upstream flow angle. Within this study, the biofilm carrier can be understood as an interconnected system of four sections in which the incoming fluid volume will be distributed depending on the biomass occupation and morphology. In sections with high biofilm occupation, the flow resistance is increased. Depending on the orientation of the carrier in the flow field, this effect leads to flow evasion through less covered sections showing higher flow velocities and consequently the risk of biofilm detachment. However, there was no clear correlation between biofilm coverage and flow ratio. Biotechnol. Bioeng. 2015;112: 1023–1032. © 2014 Wiley Periodicals, Inc.

Country
Germany
Related Organizations
Keywords

info:eu-repo/classification/ddc/660, 660, ddc:660, Equipment Design, Magnetic Resonance Imaging, Chemical engineering, Bioreactors, Biofilms, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%